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Quantum localization and cantori in the stadium billiard
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We discuss the quantum dynamics of the stadium billiard whose classical motion is known to be completely
chaotic. In particular, we show how the simultaneous presence of cantori in the classical phase space and of the
phenomenon of quantum dynamical localization affects the structure of the eigenfunctions and the statistical
properties of the eigenvalues.@S1063-651X~99!50203-1#
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The study of quantum mechanics of complex systems
light of the chaotic behavior of the corresponding classi
systems has greatly improved our understanding of quan
motion@1#. For example, the possibility put forward long ag
@2# that random matrix theory~RMT! may be a convenien
tool to describe spectral properties of classically chaotic s
tems rests now on more solid ground@3,4#. However, in spite
of the progress in recent years and the growing interest in
so-called ‘‘quantum chaos’’ we are still far from a satisfa
tory understanding, as a great variety and, to some ex
unexpected rich behavior of quantum motion continues
emerge@5# for which a satisfactory explanation is require
For example, the phenomenon of quantum dynamical lo
ization discovered 20 years ago in systems under exte
perturbations@6# and now experimentally confirmed@7#,
mainly rests on numerical computations and on qualita
considerations. Only a few mathematical results exist an
is not clear whether existing semiclassical theories can
count for this important feature. Even less understood is
mechanism of dynamical localization in conservative s
tems@8#. Billiards are very convenient models to study sin
they can display a rich variety of dynamical behavior fro
completely integrable~e.g., the circle! to weakly mixing
~e.g., the right triangle with irrational angle! @9#, to com-
pletely chaotic with power law decay of correlations~the
stadium!, up to exponential decay of correlations~dispersive
billiards!. In addition, they can be studied numerically wi
great efficiency and high accuracy~here we are able to com
pute accurate eigenvalues and eigenfunctions of thedesym-
metrizedbilliard with sequential number up to 107). They
can be, to some extent, studied analytically and in labora
experiments@10#. Also, they may be relevant for technolog
cal applications such as the design of novel microlaser
other optical devices@11#.

Recently, localization has been shown to take place in
stadium billiard@12# and in other similar models@13–16#. It
is associated with the fact that, for small perturbations of
circle, the angular momentum undergoes a classical diffu
process and quantum effects may lead to suppression of
diffusive excitation.

The rich variety of classical phase space determine
quite complicated quantum structure. Indeed, the class
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motion in the stadium billiard can be described by a disc
tinuous map of the saw-tooth type. This map is known
have cantori@17#, which may act as barriers to quantum m
tion @18#. This effect has been discussed in@19# and recently
confirmed in numerical computations on the saw-tooth m
on the cylinder@15#.

In the following we discuss how the combined presen
of the cantori structure and of quantum dynamical locali
tion acts on eigenfunctions~EF! until the regime of quantum
ergodic behavior is reached. We consider the motion o
free point particle of unit mass and velocityvW ~energyE
5v2/2) bouncing elastically inside a stadium-shaped w
two semicircles of radius 1 connected by two straight li
segments of length 2e. The classical motion, for arbitrary
small e, is ergodic, mixing, and exponentially unstable wi
Lyapunov exponentL;e1/2. It can be approximated@up to
O~e!# by the discontinuous stadium-map@12# Ln115Ln

22e sinun sgn(cosun)A12Ln
2; un115un1p22 arcsinLn11

for the rescaled angular momentumL5 l /A2E, where l
5rW∧vW , and for the polar angleu ~identical to arc length for
small e!. From rigorous results on the saw-tooth map@17#
and from the stadium dynamics it can be shown that
angular momentum~for small e! undergoes a normal diffu
sive process with diffusion rate

D5^~ l n2 l 0!2&/nun@1'2e5/2~2E2 l 2!. ~1!

~Notice that the diffusion rateD depends on the local valu
of angular momentum.! The power 5/2 in Eq.~1! is due to
the existence ofcantori, which form strong obstacles to
phase space transport. In Ref.@12# the phenomenon of quan
tum localization has been shown to take place in the stad
billiard leading to strong deviations from RMT prediction
However, the dependence of the localization length on s
tem parameters is not known and in particular we do
know if, and to what extent, the presence of cantori w
influence the quantum dynamics. Indeed it has been con
tured @19# that cantori act as perfect barriers for quantu
motion provided the flux through cantori is smaller than
Planck’s cell,F,2p\. On the basis of results on the saw
tooth map@17# we can estimate theflux F @the phase space
area transported through cantori per iteration~bounce with
R2516 ©1999 The American Physical Society
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the boundary!# which is here independent of the windin
number of the resonance and, for smalle, it is given byF
'(2E)1/2e3/2, which leads to thecantori border

ec5k22/3, ~2!

where k5A2E is the wave number. Fore,ec (xªke3/2

,1), cantori act as perfect barriers, and the quantum sys
looks as if it is classically integrable. It is therefore expec
that the localization lengthl of eigenstates in angular mo
mentum variablel must be of the order of the size of canto
This size, in rescaled angular momentum variables, avera
over all the resonances, can be estimated from the exac
sults on saw-tooth map@20#, namelyp̄5ce, wherec'12 is
a numerical constant (c510 for e50.05, andc515 for e
50.005). The fact thatc slowly increases with decreasinge
is due to the presence of the cantorus along the separatr
2:1 resonance~around L50) which has a larger size
p(2,1)'Ae. In Fig. 1 we show the classical structure
cantori (e50.003) in phase space around the largest
resonance and the associated quantum eigenstate. In th
gime the~average! rescaled localization length of eigenstat
s5l /l max5l /k is indeed found to be equal to the~aver-
age! size of cantori~see Fig. 2!, s5 p̄.

For e.ec (x5ke3/2.1), when the flux trough turnstile
becomes larger than one quantum 2p\, the cantori do not
act any more as barriers for quantum dynamics and the q
tum motion follows the classical diffusive behavior up to t
quantum relaxation timetR ~break time!, which is propor-
tional to the density ofoperative eigenstates. For t.tR in-
stead, the quantum dynamics enters an oscillatory reg
around the stationary localized state with a localizat
length l . Therefore, tR5s2pdN/dE, where s5l /l max
5l /k, andN5E/8 ~from the Weyl formula!. From the dif-
fusion law ~1! we have l 2'DtR /T'sD/T, where T
'E21/2 is the average time between bounces. Thus we
tain a simple expression for the rescaled, averaged loca
tion lengths,

FIG. 1. ~a! A single classical orbit, followed up to 20 00
bounces, for the billiard withe50.003. The orbit is started in th
middle of the largest ‘‘island’’ (L50, u5p/420.0016).~b! Angu-
lar momentum probability distributionpk( l ) of the corresponding
eigenstateCk with eigenvaluek55999.8166. As it is seen, the sta
is uniformly distributed over the cantorus in the main island.
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s'D/k'ae5/2k5aex, ~3!

wherea'1.7 is a numerical constant. However, we need
add the average sizep̄ of cantori to the above expression
Therefore, forx.1, the actual expression for the localizatio
length will be given by

s5 p̄1~12 p̄!ae~x21!, ~4!

which takes into account also the fact that we need to res
the total size of angular momentum space, and that fox
51, s5 p̄. Eigenstates become delocalized~ergodic! when
s51; this defines the ergodicity border,

ee'~ak!22/5, ~5!

in agreement with the results of@12#. Thecantori bordercan
actually be observed if it is below the ergodic border a
above the perturbative borderep . The perturbative border
ep is given by the condition thate should be large enough
e.ep'k21, to couple two neighboring eigenvalues of a
gular momentum, which is equivalent to the intuitive cond
tion of comparing the deformatione with the de Broglie
wavelength. Therefore, for sufficiently largek, we haveep
,ec,ee . In this situation it is natural to expect that canto
will influence the localization process and we may have h
a nice possibility to study the effect of cantori in quantu
mechanics.

In order to check the above predictions we numerica
computed quantum eigenfunctionsCk(rW) of the stadium bil-
liard @solutions of the Schro¨dinger equation (¹21k2)Ck
50, where\51# by expanding them in terms of circula
waves ~here we consider only odd-odd states! Ck(rW)
5(s51

M asJ2s(kr)sin(2su). The eigenvaluesk5kn and the as-
sociated coefficientsas have been computed very efficient
@16# by minimizing a special quadratic form defined alon
the boundary of the billiard@21#. The coefficientas is pro-

FIG. 2. Rescaled localization lengths vs the scaling variable
x5e3/2k for five values ofe (60,k,12,000). Each point is ob-
tained by averaging over a large numbern of consecutive eigen-
states (n5100 for smallk andn51,000 for largek). The numeri-
cal data clearly show the cantori borderx51. In the cantori region
s is constant as expected, while forx.1 the numerical data agre
with the theoretical prediction~4! ~dotted curves!. For largex, the
value ofs approaches the maximal ergodic values51.
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portional to the probability amplitude of finding angular m
mentum equal to l 52s, pk( l )5u^ l 52suCk&u2

}uasu2A12 l 2/k2.
Quantum localization in the stadium is not exponential

for the kicked rotor or smooth diffusive billiards@13#. Indeed
the tails of eigenfunctions have been found@16# to decay, on
average, asp( l );u l 2^u l u&u24. Therefore, in order to char
acterize the localization length of quantum eigenfunctio
Ck , we choose the 99% probability localization lengths
rather than the more common inverse participation ratio
information entropy, etc. Indeed, the former is quite indep
dent of the nature of tails of the distributionp( l ). More
precisely, we definesk as the minimal number of angula
momentum states that are needed to support the 99% p
ability of an eigenstate Ck , sk5min$#A,( l PApk( l )
>0.99%/(0.725k). The normalization factor has been chos
in such a way thatsk51 for completely delocalized~GOE!
states. In Fig. 2 we show the dependence of the avera
rescaled localization lengths5^sk& ~averaged over a set o
consecutive eigenstatesCk with k in a narrow interval! on
the parametere and on the wave numberk ~up to k
512 000, N'107). Numerical data agree with theoretic
predictions~4! with a51.7.

We have also analyzed the deviation of levels statis
from RMT. Below the cantori border,x,1, the system acts
as if classically integrable and the nearest neighbor le
spacing distribution P(S) is nearly Poissonian,P(S)
'exp(2S), while in the regime of true dynamical localiza
tion P(S) is intermediate between Poissonian and Wign
Dyson. Furthermore we have significant numerical evide
for the fractional power-law level repulsionP(S→0)}Sq,
which is well approximated by the phenomenological Bro
distribution P(S)5bSq exp(2aSq11), b5G@11(1
1q)21#q11, a5(q11)b with exponent 0,q,1; see Fig.
3. However, the aim here is to study localization of eige
states rather than to find the exact form ofP(S), so we use
level spacing distribution merely to show deviation fro
Wiger-Dyson.

The exact stadium eigenstatesCkn
may be expanded in

terms of unperturbed quarter-circle eigenstatesFsm(rW)
5J2s(ksm

0 r )sin(2su), where ksm
0 are the eigenvalues of th

FIG. 3. Integrated level spacing distributionI (S)5*0
SdsP(s)

for two spectral samples withk;2000 ande50.002 ~cantori re-
gime!, e50.02 ~dynamical localization regime!. The samples con-
tain about 3500 consecutive energy levels each. We also plo
best fitting Brody distributionsI B(S)512exp(2aSq11) with q
50.24, andq50.04 ~nearly Poisson!.
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integrable quarter circle~the zeros of the even-order Bess
functions!. The matrixcsm

n 5^FsmuCkn
& can be easily com-

puted from the coefficientsal @13#.
It is important to note that, unlike for Wigner band ra

dom matrices@8#, the matrix csm
n ~ordered, as usual, with

increasing quantum wavenumberskn ,ksm
0 ) has asymmetric

appearance@16#. It has a band,sparsestructure with band-
width b;k, independent ofe ~for e.ep). The effective
number of nonzero elements in each row~or column! is ~on
average! equal to the localization lengthl 5sk. The ~statis-
tical! structure of the rows~stadium eigenstates, fixedn) is
typically found to be very similar to the structure of th
columns~circle states, fixeds,m). In order to illustrate the
general structure we show in Figs. 4~a! and 4~b! the prob-
ability distributions of a typical circle state in terms of eige
states of the stadium and vice versa. These distributions
strongly sparse inside the bandb;k. In Fig. 4~c! we show,
for the same stadium eigenstate, the probability distribut
p( l ) in angular momentum variablel : as expected it is
strongly localized and nonsparse. The above structure
found in the regime of dynamical localization and in th
regime of cantori localization where the quantum system
haves as if classically integrable@22#.

As the parametere is increased up to the ergodicity bord
ee , sparsity decreases and the quantum angular momen
distribution p( l ) approaches~apart from fluctuations! the
classical steady-state microcanonical distribution,pe( l )
}A2E2 l 2. Notice that the scaling parameters also controls
the deviations from RMT predictions.

In this paper we have shown that the quantum dynam

he

FIG. 4. Structure of a typical eigenstate fore50.01. ~a! Prob-
ability distribution of a circle state (l 5848, ksm

0 51999.993 49) vs
the wave number of the stadium eigenstates~a column of the matrix
ucsm

n u2 with fixed s,m); ~b! probability distribution of a stadium
eigenstate (kn51999.913 97) vs the wave number of circle states~a
row of the matrixucsm

n u2 with fixed n); ~c! the same state as in~b! in
angular momentum quantum numberl . Here the rescaled localiza
tion length isskn

50.10. The dotted curve in~c! gives the ergodic
distributionpe( l )5(8p/k2)Ak22 l 2.
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of the classically chaotic stadium billiard exhibits a ric
structure and different regimes of motion as a function oe
and energyE. It has been shown that the presence ofcantori
in classical phase space may have strong effects on the q
tum dynamics and leads to a border that is different from
perturbative and ergodic border. In the regime of quant
cantori ~where the phase space flux through cantori is l
than one quantum! the rescaled localization lengths5l /k
does not depend on energy or wave numberk5A2E. How-
ever, above the cantori border, quantum dynamical local
tion takes place and the localization lengthl is found to be
proportional to the rateD of classical diffusion in angula
momentum. The mechanism of localization is strongly co
nected to the sparsity of EFs when expanded on the bas
~unperturbed! circle states~and vice versa!. We would like to
mention that we have also analyzed another conserva
model exhibiting classical diffusive behavior, namely, t
-
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rough billiards@13# ~having analytic, nearly circular but ran
domly wiggled boundary!, where we have found very simila
results for the structure of the matrixcsm

n : symmetric struc-
ture of rows and columns, and strong sparsity fore,ee . We
suggest that the above features are typical of the quan
dynamics of conservative systems for which the Hamilton
can be written as a sum of an integrable part plus a sm
perturbation, which renders the total Hamiltonian complet
chaotic. In this case one expects a behavior of the type
scribed here, including classical diffusion in unperturbed
tion variables, quantum localization, etc.

Discussions with R. Prange, R. S. MacKay, J. Keating,
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