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Quantum localization and cantori in the stadium billiard
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We discuss the quantum dynamics of the stadium billiard whose classical motion is known to be completely
chaotic. In particular, we show how the simultaneous presence of cantori in the classical phase space and of the
phenomenon of quantum dynamical localization affects the structure of the eigenfunctions and the statistical
properties of the eigenvalugss1063-651X%99)50203-]

PACS numbds): 05.45-a

The study of quantum mechanics of complex systems imotion in the stadium billiard can be described by a discon-
light of the chaotic behavior of the corresponding classicatinuous map of the saw-tooth type. This map is known to
systems has greatly improved our understanding of quantufiave cantor[17], which may act as barriers to quantum mo-
motion[1]. For example, the possibility put forward long ago tion [18]. This effect has been discussed 19] and recently
[2] that random matrix theorRMT) may be a convenient confirmed in numerical computations on the saw-tooth map
tool to describe spectral properties of classically chaotic syson the cylinder15].
tems rests now on more solid grouf8}4]. However, in spite In the following we discuss how the combined presence
of the progress in recent years and the growing interest in th@f the cantori structure and of quantum dynamical localiza-
so-called “quantum chaos” we are still far from a satisfac- tion acts on eigenfunction&€F) until the regime of quantum
tory understanding, as a great Variety and, to some exten@,rQOdiC. bEhaVi-Or is rea(?hEd. We ConSider. the motion of a
unexpected rich behavior of quantum motion continues tdree point particle of unit mass and velocity (energy E
emerge[5] for which a satisfactory explanation is required. =v>/2) bouncing elastically inside a stadium-shaped well:
For examp|e, the phenomenon of quantum dynamica| |Oca|T.W0 semicircles of radius 1 connected by two Straight line
ization discovered 20 years ago in systems under externgegments of length & The classical motion, for arbitrary
perturbations[6] and now experimentally confirmefi], small ¢, is ergodic, mixing, and exponentially unstable with
mainly rests on numerical computations and on qualitativd-yapunov exponent ~ "2 It can be approximateflip to
considerations. Only a few mathematical results exist and i©(e)] by the discontinuous stadium-mgd2] L, ,=L,
is not clear whether existing semiclassical theories can ac=2esiné, sgn(cosﬁn)\/l—LG; 0ni1=0,+m7—2arcsinL ;1
count for this important feature. Even less understood is théor the rescaled angular momentut=1/2E, where |
mechanism of dynamical localization in conservative sys-=f[y, and for the polar anglé (identical to arc length for
tems[8]. Billiards are very convenient models to study sincesmall €). From rigorous results on the saw-tooth n{dj]
they can display a rich variety of dynamical behavior fromand from the stadium dynamics it can be shown that the
completely integrablele.g., the circlg to weakly mixing  angular momentunifor small €) undergoes a normal diffu-
(e.g., the right triangle with irrational angl¢9], to com-  sive process with diffusion rate
pletely chaotic with power law decay of correlatiofthe
stadiun), up to exponential decay of correlatiofdispersive D={((I,—1g)%/n
billiards). In addition, they can be studied numerically with
great efficiency and high accura@yere we are able to com- (Notice that the diffusion rat® depends on the local value
pute accurate eigenvalues and eigenfunctions ofddsym-  of angular momentuh.The power 5/2 in Eq(1) is due to
metrizedbilliard with sequential number up to 10 They the existence ofcantori which form strong obstacles to
can be, to some extent, studied analytically and in laboratorphase space transport. In REf2] the phenomenon of quan-
experimentg10]. Also, they may be relevant for technologi- tum localization has been shown to take place in the stadium
cal applications such as the design of novel microlasers dboilliard leading to strong deviations from RMT predictions.
other optical devicefl1]. However, the dependence of the localization length on sys-

Recently, localization has been shown to take place in théeem parameters is not known and in particular we do not
stadium billiard[12] and in other similar modelsl3—16. It know if, and to what extent, the presence of cantori will
is associated with the fact that, for small perturbations of thanfluence the quantum dynamics. Indeed it has been conjec-
circle, the angular momentum undergoes a classical diffusiveured [19] that cantori act as perfect barriers for quantum
process and quantum effects may lead to suppression of thisotion provided the flux through cantori is smaller than a
diffusive excitation. Planck’s cell, F<27h. On the basis of results on the saw-

The rich variety of classical phase space determines @woth map[17] we can estimate th#ux JF [the phase space
quite complicated quantum structure. Indeed, the classicalrea transported through cantori per iterat{bounce with

1~ 2€7(2E—12). )
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middle of the largest “island” [ =0, = w/4—0.0016).(b) Angu-

lar momentum probability distributiop,(l) of the corresponding

is uniformly distributed over the cantorus in the main island.

the boundar)] which is here independent of the winding
number of the resonance and, for smaliit is given by 7
~(2E)Y2€%2, which leads to theantori border

e.=k=28

2

where k= \2E is the wave number. Foe<e. (x:=ke%?
<1), cantori act as perfect barriers, and the quantum system
looks as if it is classically integrable. It is therefore expected

that the localization lengtl’’ of eigenstates in angular mo-
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FIG. 2. Rescaled localization length vs the scaling variable

FIG. 1. (@ A single classical orbit, followed up to 20000 x=¢3% for five values ofe (60<k<12,000). Each point is ob-
bOUnCGS, for the billiard witke=0.003. The orbit is started in the tained by a\/eraging over a |arge numbepf consecutive eigen_
states ¢ =100 for smallk and »v=1,000 for largek). The numeri-
cal data clearly show the cantori border 1. In the cantori region
eigenstatel’, with eigenvaluek=5999.8166. As itis seen, the state  js constant as expected, while for-1 the numerical data agree
with the theoretical predictiof¥) (dotted curves For largex, the
value of o approaches the maximal ergodic valwe 1.

o~D/k~ ae’*k= aex,

()

wherea~1.7 is a numerical constant. However, we need to
add the average size of cantori to the above expression.

Therefore, forx>1, the actual expression for the localization
length will be given by

o=p+(1-p)ae(x—1),

4

mentum variablé must be of the order of the size of cantori. Which takes into account also the fact that we need to rescale

This size, in rescaled angular momentum variables, averagdfe total size of angular momentum space, and thatxfor

over all the resonances, can be estimated from the exact re=1, o=p. Eigenstates become delocalizeztgodig when
o=1; this defines the ergodicity border,

sults on saw-tooth ma20], namelyp=ce, wherec~12 is

a numerical constantc& 10 for e=0.05, andc=15 for €

=0.005). The fact that slowly increases with decreasireg

is due to the presence of the cantorus along the separatrix of
2:1 resonance(around L=0) which has a larger size, in agreement with the results gf2]. The cantori bordercan
p(2,1)~e. In Fig. 1 we show the classical structure of actually be observed if it is below the ergodic border and
cantori (€=0.003) in phase space around the largest 2:labove the perturbative bordef,. The perturbative border
resonance and the associated quantum eigenstate. In this kg-is given by the condition tha¢ should be large enough,
gime the(averaggrescaled localization length of eigenstates e> e,~ k™1, to couple two neighboring eigenvalues of an-
gular momentum, which is equivalent to the intuitive condi-
tion of comparing the deformatioe with the de Broglie
For > ¢, (x=ke*?>1), when the flux trough turnstiles wavelength. Therefore, for sufficiently large we havee,
<e.< €. In this situation it is natural to expect that cantori
act any more as barriers for quantum dynamics and the quamill influence the localization process and we may have here
tum motion follows the classical diffusive behavior up to thea nice possibility to study the effect of cantori in quantum

o=/1/ma=/Tk is indeed found to be equal to tiaver-

age size of cantori(see Fig. 2, c=p.

becomes larger than one quantum72 the cantori do not

guantum relaxation timeég (break time, which is propor-

tional to the density obperative eigenstates-or t>ty in-
stead, the quantum dynamics enters an oscillatory regimeomputed quantum eigenfunctiods(r) of the stadium bil-
around the stationary localized state with a localizationliard [solutions of the Schidinger equation {2+ k?) W,
length /. Therefore,tg=c27dN/dE, where o=/1/ nax

=/1k, andN=E/8 (from the Weyl formula. From the dif-

fusion law (1) we have /2~Dtg/T~oD/T, where T

tion lengtho,

mechanics.

e~ (ak) 25,

®

In order to check the above predictions we numerically

=0, wherefi=1] by expanding them in terms of circular
waves (here we consider only odd-odd state¥ ()
=22": 185J5(Kr)sin(26). The eigenvaluek=k,, and the as-
~E 12 s the average time between bounces. Thus we obsociated coefficientas have been computed very efficiently
tain a simple expression for the rescaled, averaged localizf16] by minimizing a special quadratic form defined along
the boundary of the billiar21]. The coefficientag is pro-
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for two spectral samples withk~2000 ande=0.002 (cantori re-

gime), e=0.02 (dynamical localization regime The samples con- S 0.06
tain about 3500 consecutive energy levels each. We also plot th 2 8:8?: ©
best fitting Brody distributionsl (S)=1—exp(—aS"™?) with g 5 003
= = i = 0.02
0.24, andg=0.04 (nearly Poisson € oosl
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mentum equal o I=2s, Pi(l) |<I 23|\Pk>| FIG. 4. Structure of a typical eigenstate fer0.01. (a) Prob-

2 11272
*|ag| "V =T7K". ability distribution of a circle statel &848, k2m= 1999.99349) vs

Quan.tum localization in the §tadrum '.S 'not exponential aSthe wave number of the stadium eigenstdtesolumn of the matrix
for the kicked rotor or smooth diffusive billiard43]. Indeed Ic" 12 with fixed s,m): (b) probability distribution of a stadium

the tails of eigenfunctionsihzlave been fod@ﬁ] to decay, on eigenstateK,,=1999.913 97) vs the wave number of circle stqtes
average, ap(l)~|I—([I[}| "*. Therefore, in order to char- o of the matrix ¢ |2 with fixed n); (c) the same state as {b) in
acterize the localization length of quantum eigenfunctionsngylar momentum quantum numberHere the rescaled localiza-

Wy, we choose the 99% probability localization length  tion length ise, =0.10. The dotted curve ifc) gives the ergodic
rather than the more common inverse participation ratio Ojistribution po(1) = (87/k?) JKZ—T2.

information entropy, etc. Indeed, the former is quite indepen-

dent of the nature of tails of the distributiqn(l). More integrable quarter circléhe zeros of the even-order Bessel
precisely, we definer, as the minimal number of angular functions. The matrix02m=<<I>sm|‘Pkn> can be easily com-
momentum states that are needed to support the 99% proButed from the coefficienta; [13].

ability of an eigenstate Wy, o =min{#AZ,. pi(l) It is important to note that, unlike for Wigner band ran-
_20.95}/(0.725(). The normalization factor has _been chosengom matrices[8], the matrixc?,. (ordered, as usual, with
in such a way that =1 for completely delocalizedSOB)  jcreasing quantum wavenumbekg, k%) has asymmetric

states. In Fig. 2 we show the dependence of the averagegynearancl6]. It has a bandsparsestructure with band-
rescaled localization lengtti={o,) (averaged over a set of width b~k, independent ofe (for e>e,). The effective

consecutive eigenstatal, with k in a narrow interval on number of nonzero elements in each r@w column is (on
the parametere7and on the wave numbek (Up t0 K 4yerageequal to the localization lengti= ok. The (statis-
=12000, N~10°). Numerical data agree with theoretical jjca)) structure of the rowsgstadium eigenstates, fixag is

predictions(4) with a=1.7. . __ typically found to be very similar to the structure of the
We have also analyzed the deviation of levels statisticgo)ymns(circle states, fixeds,m). In order to illustrate the

frorr1 RMT.. Belovy the cantori bordex<1, the sy_stem acts general structure we show in Figs(a#and 4b) the prob-
as if classically integrable and the nearest neighbor levelgyjivy distributions of a typical circle state in terms of eigen-
spacing _distribution P(S) is nearly Poissonian,P(S)  states of the stadium and vice versa. These distributions are
~exp(-S), while in the regime of true dynamical localiza- strongly sparse inside the babe-k. In Fig. 4c) we show,
tion P(S) is intermediate between Poissonian and Wigner{or the same stadium eigenstate, the probability distribution
Dyson. Furthermore we have significant rrumerrcal evrdenc%a) in angular momentum variable as expected it is
for the fractional power-law level repulsioR(S—0)=S",  syrongly localized and nonsparse. The above structure is
which is well approximated by the phenomenological Brodyfoynd in the regime of dynamical localization and in the
distribution  P(S)=bS'exp(-aS"’),  b=T[1+(1  regime of cantori localization where the quantum system be-
+0) 119", a=(q+1)b with exponent 6<q<1; see Fig. haves as if classically integrabi22].
3. However, the aim here is to study localization of eigen- agthe paramete is increased up to the ergodicity border
states rather than to find the exact formR{fS), so we use ¢  sparsity decreases and the quantum angular momentum
Ieyel spacing distribution merely to show deviation from gistribution p(l) approacheqapart from fluctuations the
Wiger-Dyson. _ _ _ classical steady-state microcanonical distributigo,(l)

The exact stadium eigenstatdg, may be expanded in . 2E_1Z, Notice that the scaling parameterlso controls
terms of unperturbed quarter-circle eigenstat®g,(r) the deviations from RMT predictions.
=J,5(K2, ) sin(2s6), wherekl,, are the eigenvalues of the  In this paper we have shown that the quantum dynamics
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of the classically chaotic stadium billiard exhibits a rich rough billiards[13] (having analytic, nearly circular but ran-
structure and different regimes of motion as a functioreof domly wiggled boundany where we have found very similar
and energ\E. It has been shown that the presencearitori  results for the structure of the matriX,,,: symmetric struc-

in classical phase space may have strong effects on the quagiire of rows and columns, and strong sparsitydere,. We

tum dynamics and leads to a border that is different from th%uggest that the above features are typica| of the quantum
perturbative and ergodic border. In the regime of quantunyynamics of conservative systems for which the Hamiltonian
cantori (where the phase space flux through cantori is lesgan be written as a sum of an integrable part plus a small
than one quantuimthe rescaled localization length=//k  perturbation, which renders the total Hamiltonian completely
does not depend on energy or wave nurrber/2E. How-  chaotic. In this case one expects a behavior of the type de-
ever, above the cantori border, quantum dynamical localizascribed here, including classical diffusion in unperturbed ac-
tion takes place and the localization lengthis found to be  tion variables, quantum localization, etc.

proportional to the rat® of classical diffusion in angular

momentum. The mechanism of localization is strongly con-

nected to the sparsity of EFs when expanded on the basis of Discussions with R. Prange, R. S. MacKay, J. Keating, G.
(unperturbegicircle stategand vice versa We would liketo  Tanner, and |. Dana are gratefully acknowledged. T.P. ac-
mention that we have also analyzed another conservativiknowledges financial support from the Ministry of Science
model exhibiting classical diffusive behavior, namely, theand Technology of R Slovenia.
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